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ON QUADRATIC PROGRAMS WITH A SINGLE EQUALITY CONSTRAINT

Jong-Shi Pang

Abstract. This paper shows that an alogrithm developed by the
author in an earlier paper for solving singly constrained
quadratic programs is polynomially bounded in the number of
variables of the program if the objective function has non-
positive mixed second derivatives.
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1. Introduction

Recently, there have been several papers dealing with convex

quadratic programs having only upper and lower bounds on the

variables and one single equality constraint [7, 9, 10, 11, 15].

Quadratic programs of this kind have applications in many

different areas; see the cited papers for references. In these

papers, a common and rather interesting approach was suggested

for the solution of such quadratic programs. The approach can be

briefly outlined as follows. In the Karush-Kuhn-Tucker opti-

mality conditions of a given program, the Lagrange multiplier

associated with the equality constraint is treated as a parameter

and not as a variable of the problem. Then, ignoring the

equality constraint, the remaining conditions constitute a

parametric linear complementarity problem. From parametric

linear complementarity theory, it is known that the solutioni to

the resulting complementarity problem is a piecewise linear

function of the parameter. The problem of solving the original

program therefore reduces to finding a suitable value of the

parameter for which the corresponding solution to the

(parametric) linear complementarity problem also satisfies the

outstanding equality constraint. Incidentally, this approach may

be considered as a special application of the decomposition

principle for general convex programs described in Rockafellar

[18].

In [7, 9, 10, 11], by taking advantage of some special

properties of the objective function (separability, e.g.), the

resulting parametric linear complementarity problem (and

I, ._ __-_-_ .... " ..
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therefore the original quadratic program) can be solved extremely

easily. In fact, as pointed out in [11], the total amount of

computational effort (i.e., additions, multiplications and

comparisons) required in the separable case is bounded above by a

low-degree polynomial in the size of the given program.

Based on the technique of parametric principal pivoting and

the decomposition approach mentioned above, the author [15] has

developed a general algorithm for solving the single constrained

strictly convex quadratic program

T 1 lT Tminimize q x + ixTQx subject to c x - d and 0 x a (1)

where the matrix Q is symmetric positive definite, the vectors a

and c and the scalar d are all positive. Our purpose in this

paper is to show that the cited algorithm is polynomially bounded

in the order of the matrix Q if Q is a Stielties matrix,

i.e., if Q in addition to being symmetric positive definite has

all off-diagonal entries nonpositive. Note that a diagonal

matrix Q which yields a separable objective function is obvi-

ously Stieltjes. Some other related references for the quadratic

program (1) are (1, 4, 5, 12, 14, 16, 191.

I S)
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2. The Main Result

We find it useful to briefly review the algorithm described

in [15] for solving the quadratic program (1). We may write the

Karush-Kuhn-Tucker optimality conditions for the program as

u = q + tc + Qx + y a 0, x 0 0, uTx = 0 (2i)

v = a - x y 0, vTy= 0 (2ii)

d = cTx (2iii)

where t is the Lagrange multiplier associated with the equality

constraint (2iii). The conditions (2i) and (2ii) define a

parametric linear complementarity problem (with t as the para-

meter) to which the parametric principal pivoting algorithm [3]

is applicable. With this latter algorithm, a solution function

x*(t) can be computed. (Several simplifications can be made in

the application of this pivoting algorithm. For instance, it can

be shown that the 2 x 2 block pivots will never take place [12,

15].) The search for a suitable t* such that x*(t*) satis-

fies (2iii) as well can be achieved by a simple interpolation

scheme. If the quadratic program (1) is feasible, then the exis-

tence of t* (and therefore the success of the above procedure)

is ensured by the positive definiteness of Q.

The requirement that the vector c be stricly positive is

useful in order to initiate the pacametric principal pivoting

algorithm. It can be replaced by the weaker assumption that c

be merely nonnegative with the provision that there is a t such

that q + tc is nonnegative for all t .
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It is well-known that the solution x*(t) is a piecewise

linear function of t. Therefore, so is f(t) - cTx*(t) - d.

Basically, the interpolation step is to find out which segments

of linearity of f(t) contains its zero. The search is carried

out sequentially from one segment to the next, starting from the

infinite interval [ti, - ) where t1  is the first critical

value of t, i.e., the first breakpoint of f(t) from the right.

Obviously, given the value of x*(t) in a segment of linearity,

the amount of computational effort required in such interpolation

is linear.

The movement from one segment to another is accomplished by

principal pivoting. In order to show that the overall procedure

is polynomially bounded if Q is a Stieltjes matrix, it suffices

to prove that the number of necessary pivots is polynomially

bounded. As a matter of fact, we show that this number is at

most 2n where n is the order of 0. The first step to estab-

lish this assertion is to note that each pivot changes the status

of an x-variable in four possible ways: (i) from nonbasic at

lower bound to basic, (ii) from basic to nonbasic at upper bound,

(iii) from nonbasic at upper bound back to basic, and (iv) from

basic back to nonbasic at lower bound. Note that it is not

possible to change directly from nonbasic at either bound to

nonbasic at the other bound. Such a change requires two pivots.

The following theorem provides the key to establish to desired

polynomial boundedness.
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Theorem. Let Q be a Stieltjes matrix. Then in the application

of the parametcic principal 1i., rii,;7h t.) .'-1i-3

parametric linear complementarity problem defined by (2i) 1.1

)(2ii), each pivot must correspond to either the change of a

nonbasic x-variable at lower bound becoming basic or that of a

basic x-variable becoming nonbasic at upper bound.

Althernatively stated, the theorem says that if an x-

variable has become basic, it can never become nonbasic at zero

again, and if an x-variable has ceached its upper bound, it will

stay there t1hough termination of the algorithm. If not for the

degenerate pivots, the theorem can be proved easily by observing

the fact that the solution x*(t) is a nondecreasing functon of

t. This latter fact follows from a least-element characteriza-

tion of x*(t) 1[14]. In what follows, we gi;,e a i iect )c:of af

the theorem.

Proof of Theorem. Let I1  and 12 be the index sets of the x-

variables that are currently basic and nonbasic at upper bounds,

respectively. Let J be the complement of 1 union 1 2. Con-

sider the canonical system of the parametric linear complemen-

tarity problem (defined by (2i) and (2ii)) with respect to these

index sets. In the system, the constant and parametric vectors

are given by

I __ __
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Basic I Constant Parametric
IVariablesl I Column I Column (t) I

xI1  I1  cI 1
yr 2  2 c 2

_ _ Nonbasic Portion

vI a J -

v aj

12 12

where

(il, Ci -(QI1 1)-l(qiI + 11 112 a I 2F CiI

i ~(i2 ' , 2  
= - (q 2 

+ QI1aI2 c 2  - II (q jI ' cII

2 -2 2 2 22 2 2 11

(qj, c)= (qJ + QJI aI2 C) + QJI (q, c 12 22 1 1 1

To determine the next pivot, the following ratio test is per-

formed,

max(max(-.i/Zi:Z i > 0), maxf(ai-qi)/ci:i in Ill Zi < 0)).

If k is a maximizing index, then depending on where k comes

from, a simple principal pivot is performed.
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Since C1  = 0 by assumption and since Q has a non-

negative inverse (8], it follows that C = -(QI -1.

Therefore, we have

c -c - =01 2 12 2 1 11

because 2 = 0. Consequently, the maximizing index k

belongs to either J or I1  and the next pivot can occur only at

either a uj-row or a v -row. If k is in J, then the

co.responding xk-variable is becoming basic; whereas if k is in

Ii, then X k  is reaching its upper bound. Since a pivot will

never occur at a x I or a Yi2 -row, we have established the

theorem.

If we let I1  and 12 be the index sets as defined in the

above proof, then after each pivot, either an index k is trans-

ferred from I1  to 12, in which case the cardinality of I

decreases by I and that of 11 union 12 remains unchanged; or

else an index k not in I, and 12 is added to Il, in which

case the cardinality of I1 (and I1 union 12) increases by 1.

Since n is the number of x-variables, it follows that after at

most 2n pivots, the algorithm must terminate. This completes the

proof of our claim that the solution procedure described above

for solving the quadratic program (1) is polynomially bounded if

Q is a Stieltjes matrix. Finally, since we base our argument on

a monotonicity property of index sets, the proof is valid under

absolutely no nondegeneracy assumption.
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1 3. Some Concluding Remarks

There have been several recent papers (see (21 and refer-

ences therein) demonstrating how Khachian's ellipsoidal algorithm

for linear programming [13] can be extended to solve general

convex quadratic programs. Although such ellipsoidal algorithms

are polynomially bounded, computational experience [6] have shown

clearly that they are at their present stage, far from being

competitive with some pivoting methods for solving practical

problems of considerable size.

The algorithm discussed in the last section is of an

entirely different category. On the one hand, computational

experience (17] has shown that the algorithm performs fairly well

on large problems. On the other hand, by some simple operation

count, one can snow easily that the total computational effort

* 4required is at most of the order n. This is significantly less

than that required by the ellipsoidal algorithms.
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